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1. Introduction. A fundamental problem in the numerical solution

of hyperbolic equations is the proper approximation of the boundary condi-
tions. For example, the Teapfrog scheme applied to the following hyper-
bolic problem is unstable.
- ugtu, =0 | O<x<m
u(0,t)=sin(-t) . 0<t (1)

o u(x,0)=sin(x)

The mesh for this scheme is xj=ij=jw/J for 0<j<J. The exact solution
is sin (x-t). If a second order difference approximation for the spatial
derivative is combined with a Teapfrog scheme for time, then the following

scheme is obtained

n__.
u0=51n(~tn)

N +-¥ '1 " i \
US =u3 ~2At(u3~u3_1}/Ax
n+l_n-T_.,.,n _n .

This scheme is unstable. If the outf]ow boundary is modified as indicated

below, then the scheme is stable and has second order accuracy.

n+l_ n n_n
Uy ugmat(ug-uy_;)/ax

When the method of Tines is used for the simple Tinear hyperbolic
equation (1) with periodic boundary equations, then the resulting differ-
ence scheme is stable, provided an ODE solver with automatic step-size
adjustment is used to solve the system of ordinary differential equations.
Even if the ODE solver uses an Euler forward time-step scheme, the inte-
gration will converge as the mesh spacing is taken to zero, since the
ODE solver will take the step time-step small enough as a function of

the mesh size to guarantee convergence. It will not be the case that



At=0(ax). Note that the semi-discrete approximation produced by the
method of Tlines with periodic boundary conditions can be written in

the form
usAu  u=(u_g».--5uy.q) x3=3m/J

where the matrix A is

01T 0. .. -1
-1 0 10. . 0
-1 .
T 0-1 01.. 0
1 0 -1 0

The solution of this differential equation is given in terms of an

exponential matrix as
ult)=u(0)et

Since the matrix is skew symmetric and cyclic its eigenvalues are pure
imaginary and its eigenvectors are orthogonal. Therefore, the solution
is bounded independently of the number of mesh points. This implies
that the solution of this semi-discrete approximation will converge to
the solution of the original equation (1). Therefore any spatial
discretization which yields a skew symmetric, cyclic matrix will define
a convergent method of Tines approximation. Stability in a
finite difference scheme for hyperbolic problems 1is in a sense associated
with the temporal discretization.

Unfortunately, the method of lines does not necessarily produce
a stable scheme when the boundary conditions are not periodic. However,

the method of Tines does seem to be more Tikely to yield a stable scheme



than a leapfrog time discretization.

Qur purpose is an experimental study of some boundary difference
approximations for use on hyperbolic systems where the method of Tines
is used for the temporal discretization. Our results will refer mainly
to the Runge-Kutta-Fehlberg ODE solver, although we intend to experi-
ment with the Adams method of Shampine [9] in the future. We have found
it important to include test cases for hyperbolic systems (more than
one independent variable) for which the characteristics T1ie on both sides
of the boundary. This is in agreement with comments by Chu [3] and
Sundstrom [10]. We are interested in boundary approximations which can
be incorporated into a general PDE solver to treat hyperbolic systems
in two dimensions. Such solvers for parabolic equations in one dimen-
sion are described by Sincovec and Madsen [11], Carver [2], Loeb [6],
Bowen [1], Hastings [12] and others. Because of our interest in
general hyperbolic systems, we cannot consider boundary approximations
stated in terms of specific variables for specific equations. We can
only consider algorithms which can be presented in a general gramework.
We will test two such algorithms.

Of course, such a general algorithm requires the user to apply
it in such a way as to produce a properly posed hyperbolic problem.

We must allow the user the flexibility to set the boundary conditions.
Eventually, we might be able to supply an optional check to see that

the boundary conditions are consistent with the hyperbolic system.

2. Computational results indicating stability and accuracy of

the method of lines. In this section we consider difference approximations

for the system (1). These are semi-discrete approximations of the form



'=Ay+f (2)

=
i

where u = g_(t)=(...uj(t)...)T is a vector of mesh point values. In
this section we will Took at the eigenvalues of A and the norm of the

exponential matrix

1eM)| (3)

for four finite difference approximations. If this norm is bounded
independent of the spatial mesh, then the semi-discrete approximation
is stable. This follows from the integral form of the solution of (2)
t
u(t) = u(o)erts [ f(r)eh(tT)g, (4)
0
If the eigenvectors of A are orthogonal, then a bound for the norm of
the exponential matrix can be obtained from the eigenvalues of A.
Therefore, we compute these eigenvalues and also the norm (3) in order

to gain insight into the stability of the following four schemes.

A. An inconsistent scheme. Here a one-sided difference is used

at both boundaries in spite of the fact that the solution should be
specified at the inflow or left boundary. This must yield an unstable
approximation. The approximation is consistent, and if it were also
stable, then it would be convergent. That is, if the norm of the
exponential matrix

eAt
were bounded independently of the mesh spacing the approximation would

be convergent, which is impossible since no boundary condition has been

specified on the inflow boundary. The scheme is



09080y (2) 1) = (5)
G502 (D0 (8) 1
w0 —lug(Buy 4 (1) |

B. A second order scheme. This scheme is the same as the previous

one except
It is only first‘order at the boundary, but the overall accuracy should

be second order.

C. Fourth order with a third order boundary. This scheme is

given below., OTiger [7] has shown that subtle changes are required in
this spatial approximation when it is used with a Teapfrog time dis-
cretization, in order that the resultant difference scheme be stable.
However, it seems to be stable without modification when it is used

with a variable step ODE solver.

uo(t)=sin(-t)
}ui(t)=-(2u0-3ul+6u3ﬂu4)/6Ax

f | (6)
Us(£)=-(2u; H-16U; 1 +16U, ,-2u. )/ (248X)
Uy (£)=-(uy_5-6uy ,+3U; 1+2U,)/(6aX)

UJ(t):*('ZUJ_3+9uJ,2"]SUJ_]+T]UJ)/(GAX)



D. A fourth order scheme with a fourth order boundary approximation.

This is the same scheme as the one above except that one-sided fourth

order differences are used at the boundary.

-12u_+2u

+36u2 3 4)/(24AX)

. u](t)=—(—6u0-20u]

uJ_1(t)=n(f2ud_4+12uJ_3—36uJ_2+20uj;1+6uJ)/(24Ax) (7)

ua(t)=-(6UJ_4-32UJ“3+72uJ_2—96uJ;]+50uJ)/(24Ax)

The above four schemes can all be written in the matrix form of

equation (2). The maximum of the real parts of the eigenvalues of

the matrix A for these four schemes are given in Table I. The eigenvalues
of A were determined by using the IMSL QR routine on the CDC 6400

at the University of Colorado. The exponential matrix was determined

by summing its:series expansion. The norm is that induced by the vector
maximum norm. For the inconsistent scheme (A) the eigenvalues are all
pure imaginary with a double or triple root at zero depending on whether

J is even or odd. The instability of this scheme is evident from the
norm of the exponential matrix but not from the eigenvalues.

Schemes (B) and (C) would appear to be stable from this analysis.
However, we might expect the solution of scheme (D) to show exponential
growth in time since its matrix has an eigenvalue with positive real
part.

In order to provide a more complete test of these four schemes
we wrote a code for these schemes applied to equation (1). This pro-
vides a direct test of the stability and accuracy of these schemes.

Table II shows the error obtained with the various schemes after

integration to the indicated value of t=T using the mesh resolution



determined by J. Note that the number of intervals per wave is 2(J-1)
since the mesh runs from x=0 to x=r and J+1 is the number of mesh
points. Scheme (A) is clearly unstable. Schemes (B) and (C) seem to

be stable which js consistent with the results in Table I giving the
characteristics of the matrices corresponding to these schemes. Scheme
(D) seems to be weakly unstable when the system is solved with the RKF
ODE solver. However this scheme seems to be stable when the Runge-Kutta

scheme with a fixed ratio At/ax is used.

3. A variable coefficient problem. A hyperbolic problem which

is more typical of many applications than equation (1) is the following

defined on the interval O<x<r.

ut+cos(t)ux=cos(x—t)(cos(t)~1)=r(x,t)

If cos(t)>0 then u(0,t)=sin(-t) . (8)
If cos(t)<0 then u(r,t)=sin (n-t)

u(x,0)=sin x

The solution of this problem is u(x,t)=sin(x-t). The mesh is xj=jw/J,
for 0<j<J. In this problem the inflow and outflow boundary alternate
between the two endpoints of the interval. When cos(t)>0 the left
boundary is the inflow point. This makes the use of an ODE solver
awkward if the method of equation (6) is used to define the system of
differential equations. When cos(t)>0 the unknowns are (u](t),...,uJ(t))

and when cos(t)<0 the unknown vector has shifted to (uo(t),...,uJ_1(t)).



Therefore we differentiate the boundary condition so that the system

of differential equations always contains the same unknowns.

E. A second order scheme for equation (8).

If cos(t)>0 then
ug(t)=§f(sin(—t))=-005(t)
otherwise
up(t)=-(uy-ug)/ax+r(0,t) (9)
If cos(t)<0 then
us (£)=ge(sin(n-t))=cos (t)
otherwise
uy(t)=-(uj=uj_q)/axtr(n,t)

This scheme uses a differentiated form of the boundary condition at an
inflow boundary and a one-sided first order difference approximation
to the differential equation at an outflow boundary. The definition
of the differential equation used to define the solution along the
boundary 1ine varies depending on the inflow-outflow nature of the
boundary. However, the solution along these boundary lines is always

determined by a differential equation.

F. A fourth order scheme for equation (8).

If cos(t)>0 then
uo(t)=-cos(t)
otherwise

ug(t)=-85(v)4+r(0,t)



Here 65 is the third order difference approximation of uX(O) using
(xo,x],xz,x3). The equation for ub(t) is similar. The remainder of
the system is identical with that of equation (6).

The results of using these schemes to approximate the solution
of equation (8) is given in Table III. These results indicate that
these schemes are stable. The norm of the second order approximation
shows a slow Tinear growth with time. The error shows the expected
asymptotic behavior with J (approximately). The behavior of this method
on a more complex multidimensional problem awaits testing which we

hope to carry out in the near future.

4. General boundary approximation algorithms. In this section

we consider a program for the following, more general class of nonlinear

hyperbolic equations.

Q7
=

i

»
[
v

= Blaluxt))+h(u,x,t) an
or the nonconservation form

AL _ oAU
at f(axsﬂsxat)‘l'h(ﬂsxat) “])

Here f, g, and h are general vector valued functions and u(x,t) is the
vector solution. We assume that boundary conditions are given at two
end points X=a and x=b. We consider two methods to specify these boundary
conditions.

The first method requires the specification of a subset of the
unknowns at each boundary point. Consider the Teft boundary x=a. The
unknowns are (uT(x,t),...,uM(x,t)). The p unknowns (um seensl ) from

1 p
the set I = {p1,...,pm} are specified as follows:
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u (aat) = S'l (y_II(a3t)st)

™
(13)
ump(a,t) o Sp(gII(a,t),t)
Here u;y = (u_ 5...,u ) is the compliment of up = (um seeesU ). The

my Mhy-p 1 mp
problem specification must include the integer p and the functions

S],...,Sp at both boundary points. Note that p may depend on the time t.
The functions Si are used to set the values of Ug at the boundary. The
values of upp are computed from the hyperbolic equation, using one sided
approximations for spatial derivatives.

For example, consider the variable coefficient problem given by
equation (8). At the left boundary (x=0), if cos(t)>0, then for the
number of boundary constraints we have p=1. The function 31(UII’t)=
31(t)=—sin(t). Note that Urg is empty in this case. If cos(t)<0,
then p=0 at the Teft boundary and Uy is empty. In this case the value
of Uo(t) (here Uj(t) denotes the approximation to u(xj,t) on the "time
Tine") is obtained from the differential equation

dUj
rral -cos(t)as(g)0+r(x0,t) (14)
where 83 represents the onesided difference approximation.

When the ODE solver, such as the Runge-Kutta-Fehlberg is used,
there is a slight problem in implementing this algorithm. When the
characteristic slope cos(t) changes sign, the nature of the system of

ordinary differential equations changes. When cos(t)>0, the unknowns in

the system (8) are (U],...,Uj), but when cos(t)<0 the unknowns are (UO,...,UJ_1).
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The ODE solver always works with the full set of unknowns including the
boundary values, that is (UO""’UJ)‘ However, in computing the "right
side" functions in the Runge-Kutta steps the boundary constraints are
applied to set the boundary values for variables in the UI sets. If the

system of ODE's is written

du

_J-
dt _F_J'(Uos-..’UJat) (15)

and go is in the constrained set UI for t = tn+¥/2At, then the function
fj(UO,...Uj,tn+1/2At) used in the Runge-Kutta step is replaced by
Fj(S(UII,t+1/2At),U1,...,UJ,t+1/2At). Also, at the end of the step the
value of Ug computed by the ODE solver is replaced by S(Uo,t) provided
UO is still in the constrained set UI' Obviously this requires modifi-
cation of the ODE solver. There is no guarantee that this method will
converge. In fact, as we will see shortly, it does not always converge.
The algorithm can be implemented as part of a PDE package once the user
has supplied the subroutines to evaluate p, the sets UI’ and the functions
S; (Urp»t).

The second method is a generalization of the differentiated
boundary conditions described in section 3 in equations (9) and (10).
In this case the user is allowed to reset the time derivatives used
by the ODE solver to compute the boundary values, that is

duy
m,J _
a T

[T
M0 = F  (Un.F

at m,0(Yp:Fgst)  and

m,dJ N Fm,J(gJ’EJ’t) (16)

Here we assume a system of equations for the unknowns U 3 where there are

9

M unknowns (T<m<M) and the mesh points are Xj(a=x0<x]< - e<xgb).
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- T . . .
The vectors EO = (F],O""’FM,O) and EJ are the time derivatives
obtained using one sided difference approximations in the hyperbolic
system at the boundary. The vectors QO’EO and the time t are supplied

to a user written subroutine which must then determine the set I and

dU A
return values for —a%i9-= Fp 0° for pel. The remaining time derivatives

for piI are the values Fp’0 obtained from onesided differences in the

hyperbolic system. This method is going to be difficult to explain to a

user. However, it is the only method that has, so far, worked reliably.
We will illustrate this method by the following example. This

is a system with characteristics of different sign. Chu [3] and Sundstrom

[10] have noted the difficulties of setting boundary conditions for such

systems.
au] ) SBu] ) 48u2 0ct
3t % ax = (17)
, O<xx<b
8u2 i 28u] i 3Bu2 e
9t X X
This system is derived from
g% = gg— U= Uq-u, u]=2u+v
v _ oy _ -
"é”'_—t' - '5;(" vV = ZUZ-U] UZ U+V

Therefore the following boundary conditions are proper, since they
amount to a specification of the characteristic variable: on the
inflow boundary.
at x=0 v=2u2(0,t)~u](0,t)=-sin2wt
at x=b u=u1(b,t)—uz(b,t)=sin2w(b+t)
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We have chosen the boundary conditions to correspond to the following
solution

u](x,t) = 2sin2n(x,t)+sin2n(x~t)
(19)

1]

uz(x,t) sin2nlx+t)+sin2n(x-t)

To use the first method of setting the boundary conditions we must
specify the set UI at each boundary point. There is no unique choice
here, since neither uy nor u, are characteristic variables. We will try

to specify u, at each boundary from the given boundary conditions, namely
1

at x=0 u](O,t)=2u2(0,t)+sin2nt (20)

at x=b u](b,t)=u2(b,t)+sin2w(b+t)
In this case I = {1}, UI = {u1}, ITI = {2}, UII = {uz}, and p =1 at
both boundary points.
A derivative rather than a constrained boundary condition can be

obtained by differentiation of the above equation, namely

du du
dt]’o = Zdtz,o + ZWCOSZWt at X=0

(21)
+ 2ncos2n(b+t) at x=b

du1’0 _ duZ’O
dt” T dt

The derivative du2/dt on the right can be computed from the hyperbolic
system using one sided differences and then used in the user supplied
routine to compute du1/dt by equation (21) above.

As our results show neither of these methods given by equations
(20) and (21) work satisfactorily. They both specify the inflow character-
istic variable. The outflow characteristic should be computed using
one sided differences. In equation (20) the inflow characteristic is
specified by the boundary constraint. However, there is certainly error

in the computed value of Uy used on the right side of the boundary
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constraint. This error can be transmitted to the other boundary and
reflected back. The boundary condition probably should not allow much
error in the incoming characteristic.

We tried a third type of boundary condition obtained by differen-
tiating the boundary constraint and combining it with the equation for the
outgoing characteristic variable obtained from the hyperbolic system.

That is, at x = 0

du- - du
- .1’0 + 2 .250 = -2ncos2nt
dt dt
1 N
dt dt 1,0 2,0

S
BX X
and F2,0
i R
X HX

obtained using one sided differences. These equations yield

du] 0
= = 2F]’O-2F2’O-ZWC052ﬂt
(22)
du
2,0 _
'a*'—t—-—-—' - F-l ’O—ano—Zﬂ‘COSZ'ﬁt

There are errors in computing F1 0 and F2 0° but these will cancel out
in the computation of the time derivative of the inflow characteristic
(v=292~u]) when this boundary condition is used. Perhaps this is the

reason for the superior performance of condition (22) over (20) and (21).

However, we do not have a solid theoretical understanding of these results,
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5. Some computational results. These results all refer to the

solution of equation (17) using a fourth order centered finite difference
approximation in the interior and third order one sided differences
near the boundary to approximate the spatial derivation 8/3x. The
Runge-Kutta-Fehlberg [5] method was modified to allow use of the
'constrained" boundary condition (20). The "derivative-constrained”
condition (21) and the "derivative-characteristic" condition (22) were
also used. The parameter ¢ refers to the error tolerance used in the
Runge-Kutta-Fehlberg. The variable J is the number of mesh points, and
x=b is the right boundary. The results depend on b, probably because
of the way the error is reflected between the two boundaries. The
error is the relative error in the computed solution at the indicated
time t=T. The parameter NE is the number of evaluations of the time
derivative required in the integration. Each time step requires 6
evaluations (5 if it follows an unsuccessful step).

There seems to be Tittle difference between the results for the
constrained-boundary (20) and the derivative-constrained method (21),
except for a slight difference in the number of functional evaluations.
This difference can be largely eliminated by omitting the error estimate
for the constrained boundary variables - at Teast this was our experience
for the single equation (1). Only the characteristic derivative method
(22) is free from the error growth which is probably due to multiple
reflections from the boundaries. Note that the severity of the error
growth depends on the length of the interval (the parameter b). The
error reinforcement upon reflection is probably dependent on the phase
angle which in turn depends on b. Of course, these results are based on

a single, simple test case and may not apply to a given problem.
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These computations were performed on the CDC 6400 at the

University of Colorado.
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- Inconsistent 2nd .6 § 0.0 % 50.
order scheme (A). BT » 0.0 ' 199,
5 i
21 % 0.0 L 798.
Consistent 2nd | | |
order scheme (BY, 6 0.0 ?
11 % . i .
21 0.0 4.
Ath order with
3rd order boundary (ty, 6 -0.04
1 -0.03 : .
21 0.0001 ! 4.
4th order with ‘ ' o
4th order boundary (pJ,- 6 - -0.54 t 5.
11 0.26 104
21 - 0.26 : 15.

Table I. Behavior of the matrix A
of the semidiscrete scheme y '=Autg.

Here - denotes the reai part of L

;H,’e1genv51ue of A



T=6.28 "

T=62.8

J T=1256.
(A) Inconsistent, RKF
ODE solver, 11 9.44 665. unstable
(B) Second order spatial,
RKF ODE solver, 11 0.056 0.057 0.058
(C) Fourth order 6 0.061 0.069 0.070
spatial. Fourth
order Ringe-Kutta 11 0.0059 0.0067 0.0068
with fixed a=at/ax= |21 0.00039 0.00042 0.00042
1.8, Third order at
boundary,
(D) Fourth order spatial.
Fourth order Runge- 6 0.052 0.066 0.069
Kutta with fixed at.
Fourth order at 11 0.0031 0.0038 0.0039
boundary, ‘ -
(C) Fourth order spatial.| 6 0.012 0.016 0.015
RKF ODE solver,
Third order at 11 0.0043 0.0043 0.0043
boundary. 21 0.00024 0.00024 0.00025
(D) Fourth order spatial.| 6 0.033 - 0.025
RKF ODE solver. 11 0

~ Fourth order at

boundary.

.00069

0.0047

unstab1e

Table II. Error for various schemes
applied to equation (16)




J  T=6.28 T=101 T=201 T=402 T=804
(E) Second order, solved | 6| 0.21 0.99 1.13 1.57 2.18
by RKF 11| 0.065 0.33 | 0.56 0.88 1.39

Null =134 flull =1.31 | Jull =1.65| | uli=2. 27
21| 0.015 0.10 | 0.18 0.35 0.72
(F) Fourth ordgr, solved 6] 0.043 0.20 0.23 0.26 0.30
%ﬁd§KF= 3" order at 111 o 0000 | 0012 | 0.020 0.034 | 0.052

~ , llull =1.00{{[u] =1.00] {Ju] =1.01{ju]l =1.01

21| 8.4E-5 6.1E-4 | 1.1E-3 2.2E-3 | 4.7E-3

Table

ITI.

Error for the solution of

equation (21).

and fluj
the solution.

Here T=time,
is the maximum norm of



Constrained boundary 11 1.0 0.01 1.0 348 0.052
§ (20) 11 1.0 0.01 2.0 684 0.14
! 11 1.0 0.01 4.01 1344 0.33
11 1.0 0.01 10.0} 3312 0.27
11 1.0 0.01 20.0] 6600 0.63
6 0.5 0.01 1.0 354 0.011
6 0.5 0.01 4.0{ 1350 0.031
6 0.5 0.01 10.0] 3312 1.16
6 0.5 0.01 20.0¢ 10122 | 213.00
Derivative-constrained 11 1.0 0.01 1.0 318 0.052
; (21) 11 1.0 0.01 2.0 6.2 0.14
6 0.5 0.01 1.0 318 0.011
6 0.5 0.01 4,00 1194 0.031
Characteristic-derivative 11 1.0 0.01 1.00 174 0.047
- (22) 11 1.0 0.01 2.0 342 0.061
11 1.0 0.01 4.0 666 0.060
11 1.0 0.01 10.0] 1638 0.060
1 1.0 0.01 50.0 8094 0.060
11 0.5 0.001 1.0 606 3.1E-3
11 0.5 0.001 20.01 11592 3.1E-3

Table IV. Error for solution of equation (17)
with various boundary conditions.



